В вашей корзине: 0 тов.
оформить | очистить
Отдел сбыта: +7 (8453) 76-35-48
+7 (8453) 76-35-49
Не определен

Генетика популяций. Микроэволюция. Закон Харди-Вайнберга

В процессе эволюции живых организмов ясно прослеживается тенденция к той или иной форме интеграции, которая проявляется, начиная с молекулярного уровня организации и заканчивается биосферным. Интеграция позволяет осуществлять разделение функций между отдельными элементами системы, что делает саму систему более лабильной, жизнеспособной и экономичной. Один из уровней интеграции, существующий между индивидуумом и видом, представлен популяцией.

Популяция — это группа особей одного вида, объединенных общим местом обитания. Она складывается под влиянием условий существования на основе взаимодействия трех факторов: наследственности, изменчивости и отбора. Особи внутри популяции обладают сходной системой приспособлений к условиям среды и из поколения в поколение воспроизводят основные адаптивные признаки.

Популяция является основной единицей эволюции. На эту роль популяция вышла благодаря следующим особенностям:

  1. Популяция — самовоспроизводящаяся система, способная к длительному существованию во времени и пространстве, в отличие от индивидуума, жизнь которого ограничена узкими временными рамками и который может не оставить потомства. В основе воспроизводства популяции лежит процесс размножения составляющих ее особей.
  2. Популяция является полномочным представителем вида, т.к. ее генофонд включает все основные гены видового уровня. В то же время в ней испытываются новые гены и их комбинации, за счет чего происходит обогащение видового генофонда.
  3. В популяции в результате скрещиваний осуществляется обмен генетической информацией между особями, который изменяет генотипическую структуру популяции, позволяя ей адекватно реагировать на разнообразные воздействия.

Основными характеристиками популяции являются: ее генофонд, численность, ареал и генотипическая структура. Все  они динамичны, подвержены временным, иногда очень значительным, колебаниям. Динамические процессы, приводящие к изменению генетической структуры старых и формированию новых популяций, обозначают термином микроэволюция.

Исследования в области генетики популяций были начаты в первые годы ХХ в. Основателем этого направления считается датский генетик В. Иогансен, который разработал учение о популяциях и чистых линиях. Изучая наследование количественных признаков в популяциях фасоли, Иогансен пришел к выводу о неэффективности отбора в чистых линиях и эффективности его в популяциях, в основе чего лежит генетическая однородность первых и гетерогенность вторых. Открытие Иогансена, наряду с законами Менделя, способствовало созданию научных основ селекции.

Большинство популяций животных и растений складываются на основе свободного скрещивания особей — панмиксии. Это так называемые менделевские, или панмиктические, популяции раздельнополых животных и растений-перекрестников, в которых осуществляется постоянный обмен генетической информацией между ее членами. Иной тип популяций образуют организмы, которым свойственно самооплодотворение или вегетативное размножение. В этом случае обмен генами между особями либо полностью исключен, либо затруднен. Это так называемые закрытые популяции (растения-самоопылители, животные-гермафродиты), которые складываются как группы особей одного вида, имеющие общее происхождение, общий генофонд и общую систему адаптаций. И, наконец, промежуточный тип характерен для популяций растений, в которых самоопыление чередуется с перекрестным, а половое размножение с апомиксисом (факультативные апомикты) или вегетативным размножением. Такие популяции обычно характеризуются сложной генетической структурой.

Особое положение в живой природе занимают популяции человека. Действие биологических факторов, изменяющих генетическую структуру популяции, в первую очередь естественного отбора, изменено в результате деятельности самого человека. С помощью достижений науки, культуры, этики и медицины человек вносит существенные коррективы в процесс конструирования популяций, стремясь свести до минимума риск распространения “вредных” генов. Однако существование человеческих популяций подчиняется тем же законам, которые действуют в других популяциях.

Основной закон генетики популяций был сформулирован в 1908 г. математиком Дж.Г. Харди в Англии и врачом В. Вайнбергом в Германии, независимо друг от друга, на основе данных, относящихся к популяциям человека. Главный постулат этого закона сводится к тому, что частота гена не изменяется от поколения к поколению, а распределение генотипов в каждом поколении соответствует формуле бинома Ньютона, т.е. определяется возведением в квадрат суммы частот двух аллелей.

Рассмотрим процедуру выведения этого закона. Возьмем достаточно большую по численности менделевскую популяцию, в которой присутствуют два аллеля одного гена: А и а. В такой популяции будут встречаться три генотипа: АА, Аа и аа. Обозначим частоту доминантного аллеля через p, а рецессивного через q. В случае свободного комбинирования гамет А и а частота каждого из трех генотипов будет равна: AAp · p = p2; aa = q · q = q2. Генотип Аа может возникнуть двумя путями: получив ген А — от матери, а ген а от отца, или же наоборот. Вероятность каждого из них равна pq, и, таким образом, общая частота генотипа Aa = pq + pq = 2pq.

Геометрическое изображение закона Харди-Вайнберга можно представить в виде решетки Пеннета.

F1

pA qa
pA p2 AA pq Aa
qa pq Aa q2 aa

p2 + 2pq + q2 = 1

(p + q)2 = 1

Особи с генотипом АА будут образовывать один тип гамет с геном А с частотой p2. У особей с генотипом Аа будут формироваться два типа гамет: половина с А (pq) и половина с а (pq). Особи с генотипом аа дадут все гаметы одного типа с геном а с частотой q2. Общая частота гамет с геном А, таким образом, будет равна p2 + pq = p(p + q) = 1 = p, а гамет с геном а: q2 + pq = q(q + p) = q · 1 = q.

Следовательно, частота гамет, а значит и структура популяции (соотношение разных генотипов) в ней и в следующем поколении будут такими же. В этом случае говорят, что популяция находится в состоянии равновесия.

Закон Харди-Вайнберга имеет фундаментальное значение. Его формула позволяет рассчитывать частоту разных генотипов в популяции на основании фенотипического анализа. Например, допустим, что в популяции коров животные с рецессивной красной мастью составляют 16%, остальные 84% имеют доминантную черную окраску. Следовательно, частота гомозиготного рецессива q2 = 0,16, а q, соответственно, равна 0,4.  Так как p + q = 1, то p = 0,6. Таким образом, частота гомозиготных черных животных p2 = 0,36, а гетерозиготных 2pq = 2 · 0,4 · 0,6 = 0,48.

Одно из интересных следствий, которое вытекает из закона Харди-Вайнберга, состоит в том, что редкие гены присутствуют в популяции в основном в гетерозиготном состоянии. Так, если частота рецессивного аллеля q = 0,01, то частота его у гомозигот q2 = 0,0001, а частота у гетерозигот pq = 0,01 · 0,99 ≈ 0,01, т.е. в гетерозиготном состоянии находится в 100 раз больше аллелей, чем в гомозиготном.

Из этого следует вывод, что устранить вредную рецессивную мутацию из популяции практически невозможно: всегда будет существовать зона гетерозигот, где она будет прятаться под прикрытием доминантного гена.

Формула Харди-Вайнберга применима для расчетов при следующих условиях:

1) если учитывается одна пара аллелей;

2) спаривание особей и сочетание гамет осуществляется случайно, т.е. нет ограничений на панмиксию;

3) мутации происходят настолько редко, что ими можно пренебречь;

4) популяция достаточно многочисленна;

5) особи с разными генотипами имеют одинаковую жизнеспособность.

Перечисленным условиям вряд ли может соответствовать хотя бы одна природная популяция. Закон справедлив для так называемой идеальной популяции. Но это ничуть не умаляет его значения. В жизни каждой популяции существуют периоды, когда она находится в состоянии равновесия по частотам отдельных генов. И если это равновесие по какой-либо причине нарушается, то популяция его достаточно быстро восстанавливает.

 


Читайте также другие статьи темы 11 "Генетика и эволюция":

 Вопросы и задания по теме "Генетика и эволюция"

Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы":